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Abstract

By the use of a probabilistic coupling technique and generalizing a recent
result of Zhang (2007 Lett. Math. Phys. 80 171), we derive several sharp
inequalities concerning the uniform continuity of some generalized entropies.
These inequalities capture certain aspects of the interplay between the entropies
and the uniform distance (variational distance), and establish the stability of
the involved entropies.

PACS numbers: 02.50.Cw, 89.70.+c
Mathematics Subject Classification: 94A17, 62B10

1. Introduction

In information theory and statistics, various generalized entropic quantities play a fundamental
role. Some prototypical examples are the Shannon entropy [9], the Rényi entropy [8] and the
Tsallis entropy [11]. A basic and important issue for these entropic quantities is their stability
(or robustness): if a slight change of the underlying state (probability distribution) only causes
a uniformly small deviation of the corresponding entropies, then the entropies are stable. To
appreciate the subtlety and to gain an intuitive insight into this problem, let us first review
briefly some related results.

Following Lesche [5], we will discuss the stability of a general state functional which is
often a kind of entropic quantity. The framework is as follows: for any positive integer n, let
Pn be the set of n-dimensional probability distributions (which is here interpreted as a state
space), i.e.,

Pn =
{

p = (p1, p2, . . . , pn),

n∑
i=1

pi = 1, pi � 0,∀ i = 1, 2, . . . , n

}
.
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Let J : Pn → R be a general state functional, and put

J max(n) = max
p∈Pn

J (p).

If, for any ε > 0, there exists δ > 0, such that

|J (p) − J (q)| � εJ max(n)

holds for all p, q ∈ Pn satisfying
∑n

i=1 |pi − qi | � δ, then we say that J has the Lesche
stability. Note that the stability is with respect to the variation of probability distributions,
not with respect to n (which is any but a fixed natural number). Lesche [5] showed that,
for probability distributions supported on any finite set, the Shannon entropy has the desired
stability, and argued that in sharp contrast, the Rényi α-entropy for α �= 1 is not stable. In
mathematical terms, the latter is not uniformly continuous with respect to the uniform distance.

Due to its importance, the stability issue has been further investigated by many authors.
For example, Abe [1] showed that the Tsallis entropies [11], though trivially related to the
Rényi entropies from the mathematical viewpoint, are stable for probability distributions
supported on any finite set. Moreover, Abe et al [2], Curado and Nobre [4], and Naudts
[7] discussed the stabilities for certain generalized entropies. By the use of a probabilistic
coupling technique, Zhang established a sharp inequality which controls the changes of the
Tsallis entropies in terms of the uniform distance, and thus characterizes the stability of the
Tsallis entropies from a more precise and quantitative perspective [12]. All the above results
are considered for probability distributions supported on finite sets, and for those supported
on infinite sets, even the Shannon entropy is not stable [10]. This can also be heuristically
seen from inequality (8) and example 1 in section 3, since when n → ∞, the right-hand side
of inequality (8) tends to infinite.

In this paper, we will prove several sharp inequalities which immediately provide some
quantitative characterizations of the stability of generalized entropies. Our results, being
quantitative rather than qualitative, are stronger than the above ones. The probabilistic
coupling technique introduced by Zhang plays a crucial role [12]. Given two probability
distributions supported on the same set, this technique couples the two probability distributions
(marginals) into a joint bivariate probability distribution with a further property relating their
non-coincidence probability and their uniform distance (see lemma 2).

We will only consider probability distributions with finite support and assume that the
number of supporting points equals n. Let X be a finite random variable supported on n
points, with the probability distribution {PX(i), i = 1, 2, . . . , n}. The generalized entropy we
considered is

Sf (PX) :=
∑

i

PX(i)f (PX(i)), (1)

where f : [0, 1] → [0,∞) is a nonnegative continuous function with f (1) = 0. It is clear
that if no further conditions are imposed for the function f , not much can be said about the
general properties of the entropy Sf and its stability. We will provide some rather general
and easily verified sufficient conditions for the stability of the above quantities. As simple
particular consequences, we recapitulate the stabilities for the Shannon entropy and the Tsallis
entropies.

The remainder of this paper is organized as follows. In section 2, we discuss some general
properties of the generalized entropy Sf and prepare some useful lemmas. The main results,
which characterize the variation of Sf in terms of the uniform distance of the underlying states,
are presented in section 3. Finally, section 4 concludes with some general discussion.
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2. Preliminary lemmas

Based on physical motivations and mathematical considerations, we will assume that the
function f : [0, 1] → [0,∞) satisfies the following conditions:

(a) f (1) = 0;
(b) f̃ (x) := xf (x) is concave;
(c) f (xy) � f (x) + f (y).

The family of such functions is rather rich and contains many examples which are of
statistical and physical relevance. A lot of examples will be given in the following section
after we prove theorem 1.

Some simple but important properties of the generalized entropy Sf are summarized as
follows.

Lemma 1. Under the above conditions (a)–(c), the generalized entropy Sf defined by
equation (1) has the following properties:

(1) (Maximum entropy). It holds that

Sf (PX) � f

(
1

n

)
,

for any PX ∈ Pn. The equality holds if PX is the uniform distribution: PX(i) = 1
n
, i =

1, 2, . . . , n.
(2) (Concavity). Let PX and PY be two probability distributions, then for all λ ∈ [0, 1],

Sf (λPX + (1 − λ)PY ) � λSf (PX) + (1 − λ)Sf (PY ). (2)

(3) (Monotonicity). For any bivariate probability distribution PXY with marginals PX

and PY , we have

Sf (PX) � Sf (PXY ). (3)

(4) (Subadditivity). For any bivariate probability distribution PXY , it holds that

Sf (PXY ) � Sf (PX) + Sf (PY ). (4)

Proof. (1) By the concavity of f̃ (x) = xf (x), we readily have

Sf (PX) =
∑

i

f̃ (PX(i))

= n
∑

i

1

n
f̃ (PX(i))

� nf̃

(∑
i

1

n
PX(i)

)

= nf̃

(
1

n

)
= f

(
1

n

)
.

(2) This is also a direct consequence of the concavity of f̃ (x):

Sf (λPX(i) + (1 − λ)PY (i)) =
∑

i

f̃ (λPX(i) + (1 − λ)PY (i))

�
∑

i

(λf̃ (PX(i)) + (1 − λ)f̃ (PY (i))

= λSf (PX) + (1 − λ)Sf (PY ).
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(3) From the concavity of f̃ we obtain the subadditivity of f̃ , that is,

f̃ (x + y) � f̃ (x) + f̃ (y).

To see this, note that

f̃ (λx + (1 − λ)y) � λf̃ (x) + (1 − λ)f̃ (y), ∀ λ ∈ [0, 1].

Let y = 0 and note that f̃ (0) = 0, we obtain

f̃ (λx) � λf̃ (x).

In particular, by putting λ = x
x+y

,
y

x+y
, we have

f̃ (x + y) = x

x + y
f̃ (x + y) +

y

x + y
f̃ (x + y) � f̃ (x) + f̃ (y).

Consequently,

Sf (PX) =
∑

i

f̃ (PX(i))

=
∑

i

f̃

⎛⎝∑
j

PXY (i, j)

⎞⎠
�

∑
i

∑
j

f̃ (PXY (i, j))

= Sf (PXY ).

(4) From condition (c), we have

f̃ (xy) = xyf (xy) � xy(f (x) + f (y)) = yf̃ (x) + xf̃ (y). (5)

Let

PY |X(j |i) = P(Y = j |X = i) = PXY (i, j)

PX(i)

be the conditional probability. By inequality (5) and the concavity of f̃ , we have

Sf (PXY ) − Sf (PX) − Sf (PY )

=
∑
i,j

f̃ (PX,Y (i, j)) −
∑

i

f̃ (PX(i)) −
∑

j

f̃ (PY (j))

=
∑
i,j

f̃ (PX(i)PY |X(j |i)) −
∑

i

f̃ (PX(i)) −
∑

j

f̃

(∑
i

PX(i)PY |X(j |i)
)

�
∑
i,j

(PX(i)f̃ (PY |X(j |i)) + PY |X(j |i)f̃ (PX(i)))

−
∑

i

f̃ (PX(i)) −
∑

j

∑
i

PX(i)f̃ (PY |X(j |i))

=
∑
i,j

PY |X(j |i)f̃ (PX(i)) −
∑

i

f̃ (PX(i))

=
∑

i

f̃ (PX(i))
∑

j

PY |X(j |i) −
∑

i

f̃ (PX(i))

= 0.

The proof is complete. �
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For two probability distributions PX and PY , the uniform distance (also called L1-distance,
variational distance or the Kolmogorov distance) is defined as

‖PX − PY ‖ := 1

2

∑
i

|PX(i) − PY (i)|. (6)

The fact 1/2 is incorporated not only to ensure the mathematical convenience such that the
distance lies in [0, 1], but also for some intrinsic significance because

‖PX − PY ‖ = sup
A

|PX(A) − PY (A)|,

which plays a crucial role in distinguishing probability distributions.
We will need the following key lemma which is extracted from the proof of theorem 1 in

[12], and may be of independent interest.

Lemma 2. For any two probability distributions PX and PY with the same support, there
exists a bivariate probability distribution PXY with marginals PX(i) = ∑

j PXY (i, j) and
PY (j) = ∑

i PXY (i, j), such that

PXY (i, i) = min{PX(i), PY (i)}, ∀ i. (7)

Moreover, let X and Y be the corresponding random variables, then it holds that

P(X �= Y ) = ‖PX − PY ‖,
and for i �= j ,

PXY (i, j) � ‖PX − PY ‖.

3. Uniform variations of generalized entropies and stability

With the above preparations, we now proceed to present our main results.
Consider the generalized entropy defined by equation (1). Let f satisfy the conditions

(a)–(c) stated at the beginning of the previous section. For a binary probability distribution
(ε, 1 − ε) denote its generalized entropy by

Sf (ε) := εf (ε) + (1 − ε)f (1 − ε).

Theorem 1. Let PX and PY be two probability distributions with the uniform distance

ε := ‖PX − PY ‖ ≡ 1

2

∑
i

|PX(i) − PY (i)|.

Then

|Sf (PX) − Sf (PY )| � εf

(
1

n − 1

)
+ Sf (ε). (8)

Proof. Without loss of generality, we may assume that

Sf (PX) � Sf (PY ).

Let PXY be the joint probability distribution guaranteed by lemma 2, then by the monotonicity
(3) in lemma 1, we have

|Sf (PX) − Sf (PY )| = Sf (PX) − Sf (PY ) � Sf (PXY ) − Sf (PY ). (9)
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Consider the random variable

� :=
{

0, if X = Y,

1, if X �= Y,

and let P�Y (θ, j) be the joint probability distribution of (�, Y ), then

P�Y (0, j) = PXY (j, j), P�Y (1, j) =
∑
i:i �=j

PXY (i, j). (10)

If we put

qj :=
∑
i:i �=j

PXY (i, j),

then ∑
j

qj =
∑
i �=j

PXY (i, j) = P(X �= Y ) = ε,

and

Sf (P�) = Sf (ε). (11)

Now we write the right-hand side of inequality (9) as

Sf (PXY ) − Sf (PY ) = Sf (PXY ) − Sf (P�Y ) + Sf (P�Y ) − Sf (PY ) (12)

and want to estimate the above two differences separately.
First, by equation (10) and noting that f̃ (x) = xf (x), we have

Sf (PXY ) − Sf (P�Y ) =
∑
i,j

f̃ (PX,Y (i, j)) −
∑
θ,j

f̃ (P�,Y (θ, j))

=
∑
i,j

f̃ (PX,Y (i, j)) −
1∑

θ=0

∑
j

f̃ (P�,Y (θ, j))

=
∑
i,j

f̃ (PX,Y (i, j)) −
∑

j

f̃ (PXY (j, j)) −
∑

j

f̃ (qj )

=
∑

j

∑
i:i �=j

f̃ (PXY (i, j)) −
∑

j

f̃ (qj )

=
∑

j

qj

⎛⎝∑
i:i �=j

PXY (i, j)

qj

f (PXY (i, j)) − f (qj )

⎞⎠
=

∑
j

qj

∑
i:i �=j

f̃

(
PXY (i, j)

qj

)
f (PXY (i, j)) − f (qj )

f
(

PXY (i,j)

qj

) .

From condition (c), for i �= j , we have

f (PXY (i, j)) = f

(
PXY (i, j)

qj

qj

)
� f

(
PXY (i, j)

qj

)
+ f (qj ),

which implies that (noting that f is nonnegative)
f (PXY (i, j)) − f (qj )

f
(

PXY (i,j)

qj

) � 1. (13)

Consequently,

Sf (PXY ) − Sf (P�Y ) �
∑

j

qj

∑
i:i �=j

f̃

(
PXY (i, j)

qj

)
.

6
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Since each term
∑

i:i �=j f̃
(

PXY (i,j)

qj

)
is the generalized entropy of the probability distribution{

PXY (i,j)

qj
: i = 1, 2, . . . , n, i �= j

}
supported on n − 1 points, by lemma 1 (1), it is bounded

by f
(

1
n−1

)
. Therefore, we have

Sf (PXY ) − Sf (P�Y ) �
∑

j

qjf

(
1

n − 1

)
= εf

(
1

n − 1

)
. (14)

Second, from lemma 1 (4) (subadditivity), with � playing the role of X there, we have

Sf (P�Y ) − Sf (PY ) � Sf (P�). (15)

The desired inequality (8) now readily follows from the combination of inequalities (9),
(12), (14) and (15). �

Remark. If condition (c) is replaced by the stronger inequality

f (xy) � yβf (x) + f (y), (16)

for some β � 0, then in the proof of theorem 1, inequality (13) can be modified as

f (PXY (i, j)) − f (qj )

f
(

PXY (i,j)

qj

) � q
β

j ,

and proceeding similarly as the proof of theorem 1, we readily have the stronger result

|Sf (PX) − Sf (PY )| � εβ+1f

(
1

n − 1

)
+ Sf (ε). (17)

Let us consider some concrete examples.

Example 1. Let f (x) = −log x, then the corresponding generalized entropy Sf reduces to
the Shannon entropy. Since the conditions (a)–(c) are met for such a f , we recover the stability
of the Shannon entropy.

Example 2. Let φ(q) be continuous and satisfy φ(q)(1 − q) > 0, for q �= 1. Put
f (x) = xq−1−1

φ(q)
, then Sf is the nonadditive entropy. When q > 1, the above f satisfies

conditions (a)–(c), and moreover, f (xy) − f (x) = xq−1f (y), consequently, by the above
remark, we have

|Sf (PX) − Sf (PY )| � εqf

(
1

n − 1

)
+ Sf (ε) (18)

which implies the stability of nonadditive entropies. The case φ(q) = 1 − q corresponding to
the case of the Tsallis entropy.

Example 3. More generally, for any concave function g : [0,∞) → [0,∞) satisfying
g(0) = 0, let f (x) = g(−log x), and suppose that f̃ (x) = xf (x) is concave, then f satisfies
conditions (a)–(c), and thus the corresponding generalized entropies Sf satisfy inequality (8)
and are stable.

Example 4. Let μ be any probability measure on [0,∞) and put

f (x) = 1 −
∫ ∞

0
xt dμ(t).

Then f satisfies conditions (a)–(c), and thus the corresponding entropy is stable.
If we relax condition (c), then we still have the following estimate of continuity.

7
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Theorem 2. Suppose that f is nonnegative, f (1) = 0, and f̃ (x) := xf (x) is concave.
Further assume that Sf is subadditive. Then

|Sf (PX) − Sf (PY )| � n(n − 1)εf (ε) + Sf (ε),

for sufficiently small ε := 1
2

∑
i |PX(i) − PY (i)|.

Proof. This is similar to theorem 1. First note that

Sf (PXY ) − Sf (P�Y ) =
∑

j

∑
i:i �=j

f̃ (PXY (i, j)) −
∑

j

f̃ (qj )

�
∑

j

∑
i:i �=j

f̃ (PXY (i, j)).

From the concavity of f̃ and the fact that f̃ (0) = f̃ (1) = 0, we know f̃ is increasing on [0, ε]
for sufficiently small ε. From the construction of PXY , we know that for i �= j (lemma 2), it
holds that

PXY (i, j) � ε.

Therefore,

Sf (PXY ) − Sf (P�Y ) �
∑

j

∑
i:i �=j

f̃ (ε) = n(n − 1)εf (ε). (19)

Second, from the subadditivity of the generalized entropy, inequality (15) also holds.
The desired result follows from the combination of inequalities (9), (12), (15), (19). �

4. Discussion

We have investigated some characteristic properties of generalized entropies. In particular,
we have proved three inequalities which bound the variations of the entropies in terms of
the uniform distance of the underlying states, and thus have demonstrated the stability of
such entropies. The results are established for finite systems, and cannot be extended to the
case when the support of the underlying probability distributions is infinite. On the other
hand, the results can be extended to the finite-dimensional quantum case. Apart from their
mathematical significance, the results may be of interest in the investigation of non-extensive
thermodynamics and anomalous physical systems.

Generalized entropies considered in this paper can be reinterpreted as the f -divergence
introduced by Csiszár [3]. Due to the importance and wide applications of this measure [6],
it will also be desirable to investigate the interplay between the f -divergence and the uniform
distance by means of the method of probabilistic coupling. This is left for further study.
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